FORMULAS OF ELECTROTECHNIC AND ELECTRONIC

Cross-section for single wire round $q = \frac{D^2 \cdot \pi}{4}$ or $D^2 \cdot 0,7854$ Cross-section for **bunched wire** $q = \frac{d^2 \cdot \pi}{4} \cdot n \text{ or } d^2 \cdot 0,7854 \cdot n$ Diameter for single wires cross-section $D = \sqrt{\frac{q \cdot 4}{\pi}} \text{ or } \sqrt{q \cdot 1,2732}$ Diameter for **bunched wires** $D = \sqrt{1,34 \cdot n} \cdot d$ $q = cross-section (mm^2)$ D = conductor diameter (mm) d = single wire diameter (mm) n = number of wires Conductor Resistance R = $\frac{1}{\kappa \cdot q}$ oder $\frac{\rho \cdot 1}{q}$ $=\frac{2\cdot 1}{\kappa\cdot q}$ oder $\frac{2\cdot 1}{q}$ R $_{\rm Schleife}$ = Electrical direct-current resistant (Ohm) R R $_{\rm Schleife}$ = Resistance of a complete circuit = cross-section (mm² or q mm) q к (Kappa) = Conductivity = Specific resistance ($\rho = \frac{1}{\kappa}$) ρ (Rho) = Conductor length (m) Materials Conductivity Spec. resistance $\Omega \cdot mm^2$ $\frac{m}{\Omega \cdot mm^2}$ m 58,00 0,01724 Copper 33,00 0,0303 Aluminium Silver 62,00 0,0161 7,70 0,1299 Iron Constantan 2,00 0.50 Serial connection Resistance: $R = R_1 + R_2 + R_3 + ... + R_n$ $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_r}$ $L = L_1 + L_2 + L_3 + \dots + L_n$ Capacitance: Inductance. **Parallel connection** $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$ **Resistance:** $C = C_1 + C_2 + C_3 + \dots C_n$ Capacitance: $\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_n}$ Inductance: Equivalent resistance of 2 parallel connected resistance $R = \frac{R_1 \cdot R_2}{R_1 + R_2}$ **Mutual capacity (C)** • coaxial cable $C = \frac{\xi r \cdot 10^3}{18 \cdot \ln \frac{D_a}{d}} (nF/km)$ $C = \frac{\xi \mathbf{r} \cdot 10^3}{36 \cdot \ln \frac{D_a}{d}} (nF/km)$ • parallel core shielded twisted pair $C_{B} = \frac{\xi r \cdot 10^{3}}{36 \ln \frac{2a}{d} \cdot \frac{(Da^{2} - a^{2})}{(Da^{2} - a^{2})}} (nF/km)$ Da = Outer diameter over insulation Ds = diameter over shield d = diameter of conductor a = distance - mid to mid of both conductors $\xi = dielectric constant$

Ohm's Law

The current intensity (I) is proportional to voltage (U) and inversely proportional to resistance (R)

$$I = \frac{U}{R} R = \frac{U}{I} U = I \cdot R$$

$$I = \text{current intensity (Amps - A)}$$

$$R = \text{clocatical resistance (Amps - A)}$$

- R electrical resistanc U = electrical voltage (V)

Conductance

 $G = \frac{1}{R}$ 1S = $\frac{1}{1 \Omega}$ or $1 \mu S = \frac{1}{1 M \Omega}$

S (Siemens) = reziprocal value of a resistance

is used as conductance

1 Siemens = 1/Ohm

G = electrical conductance

• Single core against earth

$$C_{B} = \frac{\xi r \cdot 10^{3}}{18 \ln \frac{Di}{d}} (nF/km \text{ or } pF/m)$$

Unshielded symmetrical twisted pair

$$C_{\rm B} = \frac{\xi r \cdot 10^3}{36 \ln \frac{2a}{1}} (nF/km \text{ or } pF/m)$$

Coaxial pair

$$C_{\rm B} = \frac{\xi r \cdot 10^3}{18 \ln \frac{Di}{d}} (nF/km \text{ or } pF/m)$$

Shielded symmetrical twistet pair

$$C_{B} = \frac{\xi r \cdot 10^{3}}{36 \ln \frac{2a}{d} \frac{(Da^{2} - a^{2})}{(Da^{2} - a^{2})}} (nF/km \text{ or } pF/m)$$

- Di = outer diameter over single core (mm)
- Da = outer diameter of multicores (mm) d = conductor diamete (mm)
- distance between two conductors mid to mid of both conductors а

Inductance of parallel cores

at low frequencies

 $L = 0.4 (ln \frac{Da}{r} + 0.25) mH/km$

 $L = 0.4 (ln \frac{Da}{r} + 0) mH/km$

Inductance of coaxial cable

at high frequencies

$$L = 0,2 (ln \frac{Da}{r} + 0) mH/km$$

Da = distance between two conductors mid to mid of both conductors

60

- r = radius of a conductor
- ξr = dielectric constant

Impedance (Z)

f

at low f

or coaxial cable
$$Z = \frac{bU}{\sqrt{\xi r}} \cdot \ln \frac{D}{d} (\Omega)$$

D = diameter over insulation

requencies
$$Z = \sqrt{\frac{R}{\omega C}} (\Omega) \cdot \tan \varphi = 1, \ \varphi = 45^{\circ}$$

at high frequencies
$$Z = \sqrt{}$$

 $R = Resistance (\Omega/km)$

- L = Inductance (mH/km)
- С = Capacitance (nF/km)
- $\omega = 2\pi f$

Wave length $\lambda = \frac{V}{f}$

$$\lambda = wave length$$

- = propagation velocity V
 - (velocity of light: 300 000 km/s)
 - = frequency
- units of attenuation Neper (N), decibel (dB) and Bel (B)

$$1 \text{ Np} = 8,686 \text{ dB}$$

$$1 \text{ dB} = 0,1151 \text{ Np} = \frac{1}{10} \text{Be}$$

1144

上海挚圣实业有限公司

电话:18149719018 邮箱:info@zenith-industrial.com 网址:www.zenith-industrial.com

f

FORMULAS OF POWER ENGINEERING

 $q = \frac{2 \cdot I \cdot 1}{\kappa \cdot u} (mm^2)$

 κ (Kappa) = electrical conductivity

 κ -copper : 58

к-Alu : 33

of conductors $(m/\Omega \cdot mm^2)$

Cross section

- for direct current and single **phase** alternative current one-phase current of known current for three-phase current
 - for direct current and single phase alternative current of known power for three-phase current

 $q = \underbrace{1,732 \cdot I \cdot \cos \varphi \cdot 1}_{\kappa \cdot u} (mm^2)$ $q = \frac{2 \cdot 1 \cdot P}{\kappa \cdot u \cdot U} \quad (mm^2)$ $q = \frac{1 \cdot P}{\kappa \cdot u \cdot U} \quad (mm^2)$

Voltage drop

For low voltage cable network of normal operation, it is advisable of a voltage drop of 3-5%.

On exceptional case, higher values (up to 7%) can be permitted in case of network-extension or in short-circuit.

•	for direct current of known current	$u = \frac{2 \cdot I \cdot 1}{\kappa \cdot q}$	(v)
	for single phase alternative current	$u = \frac{2 \cdot I \cdot \cos \varphi \cdot 1}{\kappa \cdot q}$	(v)
	for three-phase current	$u = \frac{1,732 \cdot I \cdot \cos \varphi \cdot 1}{\kappa \cdot q}$	(v)
•	for direct current of known power	$u = \frac{2 \cdot 1 \cdot P}{\kappa \cdot q \cdot U}$	(v)
	for single phase alternative current	$u = \frac{2 \cdot 1 \cdot P}{\kappa \cdot q \cdot U}$	(v)
	for three-phase current	$u = \frac{1 \cdot P}{\kappa \cdot q \cdot U}$. (v)
u U P R _w	 voltage drop(V) operating voltage (V) power (W) effective resistance (Ω)/km) 	q = cross-section (mm ²) I = working current (A = I = length of the line in m	Ampere)

L = Inductance (mH/km) $\omega L = induktiver Widerstand$ $(\Omega)/\text{km}$ ($\omega = 2 \cdot \pi \cdot f$ at 50 Hz = 314)

Nominal voltage

The nominal voltage is to be expressed with two values of alternative current U_0/U in V (Volt).

 $U_0 / U =$ phase-to-earth voltage

- : Voltage between conductor and earth or metallic U₀
- covering (shields, armouring, concentric conductor)
- Ш : Voltage between two outer conductors
- : $U/\sqrt{3}$ for three-phase current systems U₀
- : U/2 for single-phase and direct current systems Un U_0/U_0 : an outer conductor is earth-connected for A. C.- and Nominal current

Active current

I in (A)

Reactive current

 $I_w = I \cdot \cos \varphi$

Blindstrom $I_0 = I \cdot \sin \varphi$

Apparent power (VA)

 $S = U \cdot I$ $S = 1.732 \cdot U \cdot I$

Active power (W)

 $\mathsf{P} = \mathsf{U} \cdot \mathbf{I} \cdot \cos \varphi$ $P = 1,732 \cdot U \cdot I \cdot \cos \varphi$ $P = U \cdot I$

Reactive power (var)

 $Q = U \cdot I \cdot \sin \phi$ $Q = 1,732 \cdot U \cdot I \cdot \sin \varphi$ (Voltampere reactiv)

for single phase current (A. C.) for three-phase current

for single phase current (A. C.) for three-phase current for direct current

for single phase current (A. C.) for three-phase current $Q = P \cdot tan \varphi$

Phase angle

 φ is a phase angle between voltage and current $\cos \varphi = 1,0 0,9 0,8 0,7 0,6 0,5$ $\sin \varphi = 0$ 0,44 0,6 0,71 0,8 0,87

Insulation resistance

 $R_{iso} = \frac{S_{iso}}{l} \cdot \ln \frac{Da}{d} \cdot 10^{-8} (M\Omega \cdot km)$

Specific Insulation resistance

R $\cdot 2\pi \cdot 1 \cdot 10^{8}$ = Rs

- In Da
- D_{a} outer diameter over insulation (mm)
- conductor diameter (mm) d =
- di = inner diameter of insulation (mm)
- = length of the line (m)
- Spec. resistance of insulation materials (Ω · cm) = $\mathsf{S}_{\mathsf{iso}}$

 $0,4 \cdot (\ln \frac{Da}{r} + 0,25) \text{ mH/km}$

 $0,2 \cdot (\ln \frac{Da}{r} + 0,25) \text{ mH/km}$

Mutual capacity (C_B) for single-core,

three-core and H-cable)

 $= \frac{\xi \mathbf{r} \cdot \mathbf{10}^{3}}{18 \ln \frac{Da}{d}} (nF/km)$

Inductance

Single-phase

three-phase

 D_{a} = distance - mid to mid

of both conductors

= radius of conductor (mm) r

= dielectric constant έr

0,25 = factor for low frequency

Earth capacitance

 $E_{C} = 0,6 \cdot C_{B}$

Charging current (only for three-phase current)

 $I_{Lad} = U \cdot 2 \pi f \cdot C_B \cdot 10^{-6} \text{ A/km}$ je Ader bei 50 Hz

Charging power

 $\mathsf{P}_{Lad} = \mathbf{I}_{Lad} \boldsymbol{\cdot} \mathsf{U}$

Leakage and loss factor

G	$= \tan \delta \cdot \omega C(S)$	ω	=	2πf	
	C	С	=	Capacity	
tanδ	$=\frac{G}{\omega C}$			loss factor	4
	ωC	S	=	Siemens =	$\frac{1}{10}$
					132

Dielectric loss

) _v	$= U^2 \cdot 2 \pi f \cdot C_B \cdot tan \cdot 10$) ⁻⁶ (W/km)	
	f on 50 Hz		
	tanδ PE/VPE cables	~0,0005	
	EPR	~0,005	
	Paper-single core, thre	~0,003	
	Oil-filled and pressure	~0,003	
	PVC-cable		~0,05

It should be noted that for the current load of the insulated cables and wires of selected cross-section, the power ratings table is also be considered.

To estimate the voltage drop of insulated wires and cables for heavy (big) cross-sections of single- and three-phase-overhead line, the active resistance as well as the inductive resistance must be considered.

The formula for single-phase (A. C.): $U = 2 \cdot 1 \cdot I \cdot (R_{w} \cdot \cos \varphi + \omega L \cdot \sin \varphi) \cdot 10^{-3} (V)$

Three-phase:

 $U = 1,732 \cdot 1 \cdot I \cdot (R_{w} \cdot \cos \phi + \omega L \cdot \sin \phi) \cdot 10^{-3} (V)$

HELUK ABEL

邮箱:info@zenith-industrial.com

上海挚圣实业有限公司 电话:18149719018

1145 网址:www.zenith-industrial.com